Государственное бюджетное профессиональное образовательное учреждение Иркутской области «Усть-Илимский техникум лесопромышленных технологий и сферы услуг»

(ГБПОУ «УИ ТЛТУ»)

ДОМАШНЯЯ КОНТРОЛЬНАЯ РАБОТА ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ОП.02. Электротехника и электроника

Методические указания для студентов по специальности 35.02.02 Технология лесозаготовок

заочной формы обучения

СОДЕРЖАНИЕ

Введение	4
Содержание дисциплины	6
Методические указания по выполнению контрольной работы	13
Вопросы и задания к контрольной работе	16
Методические указания к решению задач	21
Вопросы для подготовки к экзамену по дисциплине	26
Список литературы	27
Приложение 1	28

ВВЕДЕНИЕ

«Электротехника электроника» c ΦΓΟС И В соответствии является общепрофессиональной дисциплиной профессионального цикла, устанавливающей знания ДЛЯ освоения специальных Настоящие рекомендации предназначены к использованию обучающимися заочного обучения специальности 35.02.02 Технология лесозаготовок техникума выполнения домашней контрольной работы, подготовки к экзамену.

Обязательным элементом изучения электротехники и электроники является выполнение контрольной работы.

Рабочая программа общепрофессиональной дисциплины «Электротехника и электроника» предназначена для реализации государственных требований к минимуму содержания и уровню подготовки студентов по специальности 35.02.02. Технология лесозаготовок. Изучать курс электротехники и электроники необходимо в строгом порядке, предусмотренном программой. Изучение учебного материала должно предшествовать выполнению контрольной работы. Задачи контрольной работы даны в последовательности тем программы и поэтому должны решаться постепенно, по мере изучения материала. Основная форма изучения дисциплины - самостоятельная работа студентов с рекомендуемой литературой.

В результате освоения дисциплины обучающий должен иметь представление:

- об основных этапах и перспективах развития отечественной электроэнергетики;
- основные способы получения, передачи на расстояние и практическое использование

электроэнергии;

- способы рационального энергопотребления;
- роль электрификации в развитии передовых технологий, автоматизации технологических процессов.

В результате освоения дисциплины обучающий должен уметь:

- собирать простейшие электрические схемы;
- выбирать электроизмерительные приборы;
- выбирать параметры электрических цепей.

В результате освоения дисциплины обучающий должен знать:

- сущность физических процессов, протекающих в электрических и магнитных цепях;
- построение электрических цепей, порядок расчета их параметров;
- способы включения электроизмерительных приборов и методы измерений электрических величин.

Основная форма изучения дисциплины - самостоятельная работа студентов с рекомендуемой литературой.

Контрольные вопросы для самопроверки помогут оценить степень изученного материала.

СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Введение

Содержание дисциплины и ее задачи, связь с другими дисциплинами. Роль в электрификации и развитии экономики. История электрификации России. Совершенное состояние и перспективы дальнейшего развития электроэнергетики, электротехники, электроники. Электрическая энергия, ее свойства и применение. Электромагнитное поле — носитель электрической энергии; две стороны электромагнитного поля; электрическое поле, магнитное поле; материальность магнитного поля.

*Р*АЗДЕЛ 1. ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

Тема 1.1. Электрическое поле

Основные характеристики электрического поля. Электрическое поле проводника с током. Проводники и диэлектрики в электрическом поле. Электроёмкость. Конденсаторы. Соединение конденсаторов.

Контрольные вопросы для самопроверки:

- 1. Сформулируйте определение эл. напряжения, напряженности, потенциала.
- 2. В чем смысл явления поляризации диэлектрика?
- 3. Что такое электрическая емкость?
- 4. Чему равна эквивалентная емкость при параллельном и последовательном соединении конденсаторов

Тема 1.2. Электрические цепи постоянного тока

Общие сведения об электрических цепях: определение, классификация. Направление, величина и плотность электрического тока. Электрическая проводимость и сопротивление проводников; закон Ома; зависимость электрического сопротивления проводников от температуры. Основные элементы электрических цепей: источники и приемники электрической энергии, их мощность и коэффициент полезного действия. Основы расчета электрических цепей постоянного тока: понятие о режимах работы электрических цепей (номинальный, рабочий, холостого хода, короткого замыкания), условные обозначения, применяемые в электрических схемах; участки схем электрических цепей, ветвь, узел,

контур; законы Кирхгофа. Последовательное, параллельное и смешанное соединение элементов и их свойства. Расчеты разветвленных электрических цепей.

Контрольные вопросы для самопроверки:

- 1. Физ. смысл эл. сопротивления. От чего оно зависит?
- 2. В чем различие между ЭДС и напряжением?
- 3. Как рассчитать эквивалентное сопротивление цепи при смешанном соединении резисторов?
- 4. Какова методика расчета сложных эл. цепей?

Тема 1.3. Электромагнетизм

Основные свойства и характеристики магнитного поля, силовое действие магнитного поля, закон Ампера, магнитная индукция, магнитный поток, потокосцепление. Индуктивность: собственная индуктивность, индуктивность катушки, взаимная индуктивность, коэффициент магнитной связи. Электромагнитные силы, энергия магнитного поля. Магнитные свойства веществ, ферромагнитные материалы, их свойства и применение. Понятие о расчете магнитных цепей; общие сведения о магнитных полях; закон полного тока; неразветвленные магнитные цепи; разветвленные магнитные цепи. Электромагнитная индукция. Закон электромагнитной индукции. Э.д.с. самоиндукции и взаимоиндукции, вихревые токи. Э.д.с. в проводнике, движущемся в магнитном поле, правила правой руки; принцип преобразования механической энергии в электрическую и электрической энергии в механическую.

Контрольные вопросы для самопроверки:

- 1. В чем физическая сущность характеристик магнитного поля?
- 2. Как привести законы полного тока к виду, подобному второму закон Кирхгофа?
- 3. В чем проявляется явление гистерезиса?
- 4. В чем сущность электромагнитной индукции?

Тема 1.4. Электрические измерения

Общие сведения об электрических измерениях и электроизмерительных приборах; физические величины и их единицы измерения; средства измерений (меры, измерительные приборы, измерительные преобразователи); прямые и косвенные измерения; погрешности измерений; классификация электроизмерительных приборов; условные обозначения на электроизмерительных приборах.

Измерение тока и напряжения: магнитоэлектрический измерительный механизм; электромагнитный измерительный механизм; приборы и схемы для измерения электрического тока; приборы и схемы для измерения электрического напряжения; расширение пределов измерения амперметров и вольтметров. Измерение мощности и электрической энергии: электродинамический измерительный механизм; измерение мощности в цепях постоянного и переменного тока; индукционный измерительный механизм; измерение электрической энергии индукционным счетчиком. Измерение электрического сопротивления: измерительные механизмы омметров; косвенные методы измерения сопротивления (метод сравнения измеряемого сопротивления с образцовым, метод замещения, одинарная мостовая схема).

Контрольные вопросы для самопроверки:

- 1. Привести условные обозначения систем измерительных механизмов?
- 2. Как определить цену деления шкалы многопредельного прибора?
- 3. Почему амперметр должен включаться последовательно с нагрузкой, а вольтметр параллельно?

Тема 1.5.Однофазные электрические цепи переменного тока.

Переменный ток: определение, получение синусоидальных э.д.с и тока, их уравнения и графики. Характеристики синусоидальных величин. Действующая и средняя величина переменного тока. Векторная диаграмма и ее обоснование. Элементы и параметры электрических цепей переменного тока. Цепь с активным сопротивлением, цепь с индуктивностью, цепь с емкостью; уравнения и графики тока и напряжения, векторные диаграммы; определение тока по заданному напряжению; мощности активная и реактивная, их определение для каждой цепи. Цепь с активными и реактивными элементами. Неразветвленная цепь переменного тока, резонанс напряжений. Разветвленная цепь переменного тока, резонанс токов.

Контрольные вопросы для самопроверки:

- 1. Дать определение амплитуды, периода, частоты, фазы, сдвига фаз, действующих значений напряжений и токов.
- 2. Как определить реактивные сопротивления конденсатора и катушки.
- 3. Объяснить способ построения векторных диаграмм.
- 4. Как определяются активная, реактивная, полная мощности? В каких единицах они измеряются?
- 5. В чем заключается явление резонанса напряжений и токов?
- 6. В чем смысл коэффициента мощности? Способы его улучшения.

Тема1.6.Трехфазные электрические цепи переменного тока

Трехфазная система электрических цепей, трехфазная цепь. Соединения обмоток трехфазных генераторов электрической энергии: трехфазная симметричная система э.д.с., прямая и обратная последовательность фаз; соединение обмоток генератора и потребителей звездой; соединение обмоток генератора треугольником; фазные и линейные напряжения, соотношения между ними. Трехфазные симметричные цепи: соединения обмоток генератора и приемника энергии звездой, четырехпроводная трехфазная цепь, роль нулевого провода;

краткие сведения об аварийных режимах в трехфазных цепях.

Контрольные вопросы для самопроверки:

- 1. В чем преимущества трехфазной системы перед однофазной?
- 2. Зависят ли фазные токи от линейных при соединении звездой, при соединении треугольником?
- 3. Какова роль нулевого провода?
- 4. Каково соотношение между фазными и линейными токами и напряжениями при соединении звездой, треугольником?
- 5. Как изменяются токи в фазах при обрыве линейного провода, если включено по схеме: звезда, треугольник.

Тема1.7.Трансформаторы

Назначение трансформаторов. Принцип действия и устройство однофазного трансформатора. Режимы работы трансформатора: холостой ход, рабочий режим, режим короткого замыкания, потери энергии и коэффициент полезного действия трансформатора. Типы трансформаторов:

трехфазные, многообмоточные, сварочные, измерительные, автотрансформаторы, их применение.

Контрольные вопросы для самопроверки:

- 1. Почему обмотки трансформатора располагаются на сердечнике, каким должен быть сердечник?
- 2. При каких условиях проводится опыт холостого хода, короткого замыкания трансформатора?
- 3. При каких условиях к. п. д. трансформатора достигает максимума?

Тема1.8. Электрические машины переменного тока

Назначение машин переменного тока и их классификация. Устройство машин переменного тока: статор электродвигателя и его обмоток. Принцип действия трехфазного асинхронного электродвигателя. Частота вращения магнитного поля статора и частота вращения ротора. Скольжение. Э.д.с., сопротивление и токи в обмотках статора и ротора. Вращающий электромагнитный момент асинхронного электродвигателя. Пуск в ход трехфазных асинхронных электродвигателей с короткозамкнутым и фазным роторами. Регулирование частоты вращения трехфазных электродвигателей. Однофазный электродвигатель. Потери энергии и коэффициент полезного действия асинхронного электродвигателя. Области применения асинхронных электродвигателей. Понятие о синхронном электродвигателе.

Контрольные вопросы для самопроверки:

- 1. Как изменить направление вращения ротора двигателя?
- 2. Объяснить принцип работы асинхронного двигателя.
- 3. Назвать ряд возможных синхронных частот вращения магнитного поля статора при частоте 50 Гц.
- 4. Как определить скольжение?

Тема1.9. Электрические машины постоянного тока

Устройство, назначение, принцип действия электрической машины постоянного тока: магнитная цепь, коллектор, обмотка якоря. Генераторы постоянного тока: генератор с независимым возбуждением, генератор с постоянным возбуждением, генератор с последовательным возбуждением, генератор смешанного возбуждения. Электродвигатели постоянного тока: общие сведения; двигатели параллельного возбуждения; двигатели последовательного и смешанного возбуждения; пуск в ход, регулирование частоты вращения двигателей постоянного тока.

Контрольные вопросы для самопроверки:

- 1. Перечислить основные конструктивные узлы машины постоянного тока, их назначение.
- 2. Какие условия должны быть соблюдены для самовозбуждения генератора постоянного тока?
- 3. Почему в момент пуска двигатель потребляет значительный ток? Какова роль противоэдс?
- 4. Как регулируется частота вращения электродвигателей?

5. Почему у двигателя параллельным возбуждением скоростная характеристика называется жесткой?

Тема1.10.Основы электропривода

Понятие об электроприводе. Выбор электродвигателя по механическим характеристикам. Механические характеристики рабочих машин, соответствие их механическим характеристикам электродвигателей; классификация электродвигателей по способу сопряжения с рабочими машинами, по способу защиты от воздействия окружающей среды. Нагревание и охлаждение электродвигателей. Режимы работы электродвигателей, общее условие выбора двигателя по мощности. Схемы управления электродвигателями: общие сведения о схемах управления.

Контрольные вопросы для самопроверки:

- 1. Какой режим работы двигателя называют продолжительным, кратковременным, повторно-кратковременным?
- 2. Как определить мощность двигателя при указанных режимах?
- 3. Какие пускорегулирующие аппараты для управления электродвигателем?

Тема 1.11. Передача и распределение электрической энергии

Схемы электроснабжения потребителей электрической электроэнергии, общая схема электроснабжения, понятия об энергосистеме и электрической системе. Простейшие схемы электроснабжения промышленных предприятий; схемы осветительных электросетей. Элементы устройства электрических сетей линии. Выбор проводов и кабелей, выбор сечений проводов и кабелей по допустимому нагреву. Некоторые вопросы эксплуатации электрических установок.

Контрольные вопросы для самопроверки:

- 3. Что называется энергетической системой?
- 4. Какие способы прокладки проводов и кабелей в цеховых сетях вам известны?
- 5. Как выполняют заземляющее устройство на предприятии?

РАЗДЕЛ2. ОСНОВЫ ЭЛЕКТРОНИКИ

Тема 2.1 Электровакуумные лампы, газоразрядные и полупроводниковые приборы.

Устройство, принцип действия и применение электровакуумных ламп; электровакуумный диод, его вольт-амперная характеристика, параметры, область применения; электровакуумный триод, его устройство. Газоразрядные приборы: с несамостоятельным дуговым разрядом, с тлеющим разрядом. Условные обозначения, маркировка. Электрофизические свойства полупроводников; собственная и примесная проводимости. Электронно-дырочный переход и его свойства, вольтамперная характеристика. Устройство диодов. Обозначение и маркировка диодов. Использование диодов. Биполярные транзисторы, их устройство, три способа включения. Условные обозначения и маркировка транзисторов. Тиристоры, динисторы, тринисторы. Области применения

полупроводниковых приборов.

Контрольные вопросы для самопроверки:

- 5. Что называют собственной и примесной проводимостью полупроводников?
- 6. Почему полупроводниковый диод используют как выпрямитель переменного тока?
- 7. Для чего нужно знать параметры диода?
- 8. Объяснить устройство транзистора, какие возможны схемы его включения.
- 9. Как устроен тиристор и для чего он применяется?

Тема 2.2 Фотоэлектронные приборы.

Фотоэлектронные явления (фотоэлектронная эмиссия, фотопроводимость полупроводников, фотогальванический эффект). Законы фотоэффекта. Работы А.Г.Столетова. Фотоэлементы с внешним и внутренним фотоэффектом. Фоторезисторы. Солнечные фотоэлементы и фотодиоды. Фототранзисторы. Условные обозначения фотоэлектронных приборов.

Контрольные вопросы для самопроверки:

- 1. В чем отличие внешнего фотоэффекта от внутреннего?
- 2. Почему полупроводники обладают фотоэлектронной эмиссией.
- 3. Назовите технические устройства, в которых применяются фотоэлектронные приборы.

Тема 2.3 Электронные выпрямители и стабилизаторы.

Основные сведения о выпрямителях. Структурная схема выпрямителя. Однофазные и трехфазные схемы выпрямления, принцип их работы. Постоянная и переменная составляющие выпрямленного напряжения. Соотношения между переменными и выпрямленными токами и напряжениями для различных схем выпрямления. Сглаживающие фильтры. Управляемые выпрямители. Стабилизаторы напряжения и тока, их назначение, коэффициент стабилизации. Схемы электронных стабилизаторов напряжения и тока, их принцип работы.

Контрольные вопросы для самопроверки:

- 1. Какие электронные элементы можно использовать как выпрямители переменного тока?
- 2. Объяснить с помощью графиков работу одно-, двухполупериодных выпрямителей.
- 3. Для чего в схемах выпрямителей применяют сглаживающие фильтры *Тема2.4 Электронные усилители*.

Принцип усиления напряжения, тока, мощности. Назначение и классификация усилителей. Основные технические показатели и характеристики усилителей. Усилительный каскад. Динамические характеристики усилительного элемента; определение рабочей точки на нагрузочной линии, построение графиков напряжений и токов в цепи

нагрузки. Каскады предварительного усиления, основные варианты оконечных каскадов. Варианты междукаскадных связей. Обратные связи и стабилизация режима работы каскада усилителя. Электронные реле. Усилители постоянного тока. Импульсные усилители.

Контрольные вопросы для самопроверки:

- 1. Какие электронные элементы используют для построения усилительных каскадов?
- 2. Какие основные показатели характеризуют усилительный каскад?
- 3. В чем преимущество усилителя на транзисторах перед ламповым?
- 4. Что называют обратной связью и, как она влияет на режим работы усилителя?

Тема 2.5 Электронные генераторы и измерительные приборы.

Колебательный контур: незатухающие и затухающие колебания. Электронные генераторы синусоидальных колебаний с трансформаторной, автотрансформаторной и емкостной связями. Переходные процессы зарядки и разрядки конденсатора (без выхода), постоянная времени цепи. Генераторы пилообразного напряжения. Мультивибраторы. Триггеры. Электронный осциллограф (структурная схема, принцип действия). Электронно-лучевая трубка с устройствами отклонения и фокусирования луча. Примеры использования осциллографа в экспериментальных исследованиях различных процессов. Принцип действия электронного вольтметра, его основные узлы.

Контрольные вопросы для самопроверки

- 5. Назовите основные электронные измерительные приборы.
- 6. Для чего применяется мультивибратор?
- 7. Объяснить принцип работы и применение триггера.
- 8. Как устроена электронно-лучевая трубка?

Тема 2. 6 Электронные устройства автоматики и вычислительной техники

Принцип работы триггера. RS-, T-, D-триггер. Однотактный, двухтактный триггер. Регистры, счетчики, сумматоры. Примеры электронных устройств ЭВМ.

Контрольные вопросы для самопроверки

- 9. Какие основные логические элементы используют в ЭВМ?
- 10. Назвать области применения информационных технологий.

Тема 2.7 Интегральные схемы микроэлектроники

Общие сведения. Понятия о гибридных, толстопленочных, тонкопленочных, полупроводниковых интегральных схемах. Технология изготовления микросхем. Соединение элементов и оформление микросхем. Классификация, маркировка и применение микросхем.

Контрольные вопросы для самопроверки:

- 11.В чем заключается принцип элементарной интеграции.
- 12. Чем отличается гибридная технология от полупроводниковой интегральной микросхемы.

- 13. Какие степени интеграции вы знаете?
- 14. Какими преимуществами обладает микросхема?

Тема2.8 Микропроцессоры и микро ЭВМ

Микропроцессоры и микро ЭВМ, их место в структуре вычислительной техники для комплексной автоматизации управления производством, в информационно-измерительных системах в технологическом оборудовании. Архитектура и функции микропроцессоров; типовая структура микропроцессора и ее составляющие; вспомогательные элементы микропроцессоров. Серийно выпускаемые микропроцессорные комплекты (МКП), микро-эвм, программное обеспечение, стандартизация в области МКП; примеры применения микропроцессорных систем.

Контрольные вопросы для самопроверки:

- 15. Привести пример программного управления технологическим процессом на производстве.
- 16. Как осуществляется программирование задачи при ее решении на ЭВМ.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ ДОМАШНЕЙ КОНТРОЛЬНОЙ РАБОТЫ

Первым этапом выполнения контрольной работы является изучение по учебникам и учебным пособиям теоретического материала тех разделов программы, которые включены в данное задание. Успешное выполнение домашней контрольной работы может быть достигнуто в том случае, если обучающийся представляет себе цель выполнения данной работы, поэтому важным условием является тщательная подготовка к выполнению контрольной работы. Контрольная работа выполняется в тетради, страницы которой нумеруются. На каждой странице тетради следует оставлять поля шириной 4 см, а в конце тетради - 2-3 свободные страницы для написания рецензии (заключения) преподавателя. Все дополнительные страницы должны быть в тетради приклеены или вшиты. Работа выполняется в ученической тетради в клетку темными чернилами (синими, черными, фиолетовыми) через строчку. В связи с достаточно активным использованием студентами персональных компьютеров разрешается выполнять контрольную работу в печатном виде, однако ее оформление также должно соответствовать существующим стандартам.

Работа выполняется аккуратно на листе формата А4 стандартным 14-м шрифтом с полуторным интервалом. Используются шрифты TimesNewRoman . Вопросы и заголовки желательно выделять курсивом и жирным шрифтом, заглавными буквами. Границы полей: левое — 3 см, правое — 1,5 см, нижнее и верхнее — 2,0 см. Одна печатная страница должна вмещать 30...40 строк текста, а в строке должно быть 60...64 печатных знака, включая пробелы. Текст печатается черным или синим цветом. В работе не должно быть помарок, перечеркиваний. Опечатки, описки и графические неточности исправляются подчисткой или закрашиванием белой краской и нанесением на том же месте исправленного изображения машинописным способом, либо от руки чернилами или тушью того же цвета, что и исправляемый оригинал. Все структурные элементы работы и главы ее основной части начинаются с новой страницы. Расстояние между разделами, подразделами и пунктами должно быть 4,5 интервала.

Абзацы в тексте начинают отступом, равным пяти печатным знакам.

После знаков препинания делается пробел, перед знаками препинания пробелов не делается. Перед знаком "тире" и после него делается пробел. Знаки "дефис" и "перенос" пишутся без пробелов. Знаки "номер" (№) и "параграф" (§), а также единицы измерения от цифры отделяются пробелом. Знак градус (°) пишется с цифрой слитно, а градус Цельсия (°С) - отдельно. Знаки "номер", "параграф", "процент", "градус" во множественном числе не удваиваются и

кавычками не заменяются. Все страницы, формулы и таблицы нумеруются. Нумерация – сквозная (т.е. номер – один, два и т.д.). Нумерация страниц указывается без черточек в правом нижнем углу. Работа должна быть выполнена аккуратно, четким, разборчивым почерком, в той же последовательности, в какой приведены вопросы домашнего задания. Перед каждым ответом на вопрос следует писать номер задания и его полную формулировку. Сокращения слов и подчеркивания в тексте не допускаются. Общий объем работы не должно превышать 24 страниц рукописного или 12 страниц машинописного текста. Сокращение наименований и таблицы в задачах должны выполняться с учетом требований ЕСКД. При переносе таблиц следует повторить заголовок таблицы, указывая над ней «Продолжение таблицы» и ее номер. Единицы измерения указывать только в результирующих значениях. В контрольной работе должны быть приведены условия задач, исходные данные и решения. Решение должно сопровождаться четкой постановкой вопроса (например, «Определяю ...»); указываться используемые в расчетах формулы с пояснением буквенных обозначений; выполненные расчеты и полученные результаты должны быть пояснены. Вычисление абсолютных величин следует производить с точностью до первого десятичного знака (0,1), в процентах – до первого десятичного знака (0,1%); относительных величинах – до второго десятичного знака (0,01).

В конце работы приводится список использованной литературы, где сначала указываются нормативные документы (законы, указы, постановления, приказы, инструкции и т.д.), затем в алфавитном порядке — учебная литература и справочные пособия с указанием фамилии и инициалов автора, наименование источника, места и года его издания; затем ставится дата выполнения работы и подпись студента. Титульный лист работы должен быть оформлен в соответствии с утвержденной формой, подписан, с указанием даты сдачи работы (см. образец).

На каждую контрольную работу преподаватель дает письменное заключение (рецензию) и выставляет оценки «зачтено» или «не зачтено». Не зачтенная работа возвращается студенту с подробной рецензией, содержащей рекомендации по устранению недостатков. По получении проверенной контрольной работы студент должен внимательно ознакомиться с исправлениями на полях, прочитать заключение преподавателя, сделать работу над ошибками и повторить недостаточно усвоенный материал в соответствии с рекомендациями преподавателя. После этого студент выполняет работу повторно и отсылает вместе с первой на проверку. Обучающиеся обязательно должны сдать контрольную работу на проверку не позднее, чем за 10 дней до экзамена. Без выполнения контрольной работы обучающийся не допускается до экзамена. Вопросы и задания контрольной работы определяются по предложенной таблице согласно присвоенного номера обучающемуся в списочном составе группы (вариант определяется на пересечении первой и последней цифр; первый по списочному составу группы выбирает вариант 01 – по вертикали 0, а по горизонтали 1; второй -02,...; 10-10 в ; 11-11в (1- по вертикали, 1 – по горизонтали).

Таблица выбора варианта

	0	1	2	3	4	5	6	7	8	9
0		1,11,21	2,12,22	3,13,23	4,14,24	5,15,25	6,16,26	7,17,27	8,18,28	9,19,29
1	10,20,30	1,11,21	2,12,22	3,13,23	4,14,24	5,15,25	6,16,26	7,17,27	8,18,28	9,19,29
2	10,20,30	1,11,21	2,12,22	3,13,23	4,14,24	5,15,25	6,16,26	7,17,27	8,18,28	9,19,29

ОПРОСЫ И ЗАДАНИЯ К КОНТРОЛЬНОЙ РАБОТЕ.

ЗАДАНИЯ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ

Задача 1-10

Цепь постоянного тока содержит несколько резисторов, соединенных смешанно. Схема цепи с указанием сопротивлений резисторов приведена на рисунке.

Номер рисунка, заданные значения одного из напряжений или токов и величина, подлежащая определению, приведены в табл. 1. Всюду индекс тока или напряжения совпадает с индексом резистора, по которому проходит этот ток или на котором действует это напряжение. Определить также мощность, потребляемую всей цепью, и расход электрической энергии цепью за 8 ч. работы.

Указание. См. решение типового примера 1

Таблица 1

Номер задачи	Номер рисунка	Задаваемая величина	Определить
1	1	U _{AB} =100B	I_3
2	1	I ₁ =_20A	I_2
3	1	U ₂ =.30B	I ₅
4	1	I ₅ =_10A	$ m U_{AB}$
5	1	U _{AB} =50B	\mathbf{I}_1
6	2	I ₂ = 3 A	I ₅
7	2	I ₄ = 5 A	U _{AB}
8	2	U ₅ = 30 B	\mathbf{I}_1
9	2	I ₃ =2 A	\mathbf{U}_1

10	2	$U_{AB} = 80B$	U_4

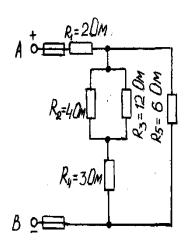


Рис.1 Рис.2 Задача 11-20

Цепь переменного тока содержит различные элементы (резисторы, индуктивности, емкости), включенные последовательно. Схема цепи приведена на соответствующем рисунке. Номер рисунка и значения сопротивлений всех элементов, а также значение напряжения, приложенного к цепи заданы в табл. 2.

Начертить схему цепи и определить следующие величины, относящиеся к данной цепи: 1) полное сопротивление z; 3) ток I; 4) угол сдвига фаз φ (по величине и знаку); 5) активную P, реактивную Q и полную S мощности цепи. Начертить в масштабе векторную диаграмму цепи и пояснить ее построение.

Указание. См. решение типового примера 2

Таблица 2

Номер задачи	№ рисунка	R ₁ ,Ом	R ₂ , Ом	x _{L1} , Om	х _{С1} ,Ом	Напряжение, приложенное к цепи
-----------------	-----------	--------------------	---------------------	----------------------	---------------------	--------------------------------------

11	3	4	-	6	3	U=40 B
12	3	6	-	3	9	U=40 B
13	3	4	-	5	12	U=40 B
14	3	8	-	6	8	U=40 B
15	3	4	-	3	2	U=40 B
16	4	3	6	-	2	U=80 B
17	4	8	2	12	4	U=80 B
18	4	16	4	10	6	U=80 B
19	4	10	2	-	8	U=80 B
20	4	2	4	5	6	U=80 B

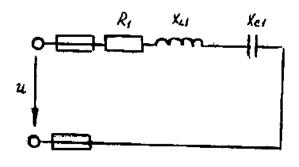


рис.3

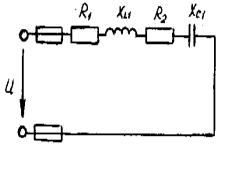


рис.4

Задача 21-30

Трехфазный трансформатор, тип которого и номинальное напряжения обмоток заданы в таблице 3.1, имеет технические данные, приведенные в

таблице 3.2 Соединение обмоток «звезда-звезда». Определить: 1) номинальные токи в обмотках; 2) коэффициент трансформации; 3) ток холостого хода в амперах; 4) напряжение короткого замыкания в вольтах; 5) к.п.д при номинальной нагрузке и $\cos \varphi_2 = 0.92$.

Указание. См. решение типового примера 3

Таблица 3.1

Номер задачи	Тип трансфор- матора	U 1н, кВ	U 2н ,кВ	Номер задачи	Тип трансфор- матора	U1н, кВ	U 2н ,кВ
21	TM-40/10	10	0,4	26	TM-1000/35	10	0,4
							,
22	TM-1600/35	35	0,4	27	TM-250/10	6	0,23
23	TM-100/10	6	0,23	28	TM-1600/35	10	0,4
24	TM-160/10	10	0,4	29	TM-63/10	10	0,23
25	TM-400/10	10	0,69	30	TM-630/10	6	0,4

Таблица 3.2

Тип трансфор- матора	Sн, кВА	Верхний предел номи- нального напряжения обмоток		Потери мог	Uк "%	I _{1X} ,%	
		Первичной, Uн, кВ	Вторичной U _{2н} , кВ	Холостого хода Рх, Вт	Короткого замыкания Рк, Вт		
TM-40/10	40	10	0,4	170-200	880-100	4,7	4,5
TM-63/10	63	10	0,4	250-300	1280-1470	4,7	4
TM-100/10	100	10	0,4	340-410	1970-2270	4,7	3,5

TM-160/10	160	10	0,69	540-650	2650-3100	4,7	3
TM-250/10	250	10	0,69	780-950	3700-4800	4,7	3
TM-400/10	400	10	0,69	1080-1300	550-5900	4,5	2,5
TM-630/10	630	10	0,69	1600-1900	7600-8500	5,5	2,5
TM-630/35	630	35	11	1900-2300	7600-8500	6,5	3,5
TM- 1000/35	1000	35	6,3	2600-3100	11600	6,5	2,6
TM- 1600/35	1600	35	10,5	3500-4200	16500	6,5	2,2

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ

Методические указания к решению задачи 1.

Решение этой задачи требует знания закона Ома для всей цепи и ее участков, первого закона Кирхгофа и методики определения эквивалентного сопротивления цепи при смешанном соединении резисторов.

Пример 1.

Для схемы, приведенной на рис.1, определить эквивалентное сопротивление цепи R_{AB} , токи в каждом резисторе и напряжение U_{AB} , приложенное к цепи. Заданы сопротивления резисторов и ток I_4 и R_2 . В обоих случаях напряжение U_{AB} остается неизменным.

Решение:

Задача относится к теме "Электрические цепи постоянного тока". После усвоения условия задачи проводим поэтапное решение, предварительно обозначив стрелкой направление тока в каждом резисторе. Индекс тока должен соответствовать номеру резистора, по которому он проходит.

Определяем общее сопротивление разветвления R2, R3. Резисторы соединены параллельно, поэтому

$$R_{2,\lambda} = \frac{R_1 R_3}{R_1 + R_3} = \frac{15 * 10}{15 + 10} = 6 \text{ Ow}$$

Теперь схема цепи принимает вид, показанный на рис.1б.

езисторы $R_{2,3}$ и R_5 соединены последовательно, их общее сопротивление

$$R_{2.3.5} = R_{2.3} + R_{5} = 6 + 4 = 10 \text{ OM}$$

Соответствующая схема приведена на рис.1,в.

езисторы $R_{2,3,5}$ и R_4 соединены параллельно, их общее сопротивление

$$R_{2,3,4,5} = \frac{10 * 10}{10 + 10} = 5 \,\text{O}_{M}$$

Теперь схема цепи имеет вид, приведенный на рис.1, г.

Находим эквивалентное сопротивление всей цепи:

$$R_{AB} = R_1 + R_{2.14.5} = 5 + 5 = 10 \text{ Ord}$$

Зная силу тока I₄, находим напряжение на резисторе R₄:

$$U_{_4} = I_{_4} * R_{_5} = 5*10 = 50B$$

6. Находим падение напряжения на резисторе R₅:

Поэтому напряжение на резисторах R2,3

$$U_{2,3} = U_4 - U_5 = 50 - 20 = 30 B$$

7. Определяем токи на резисторах R2 и R3:

$$I_1 = \frac{U_{2,3}}{R_2} = \frac{30}{15} = 2A$$

8. Применяя первый закон Кирхгофа, находим ток в резисторе R₁:

$$I_1 = I_2 + I_3 + I_4 = 2 + 3 + 5 = 10A$$

9. Вычисляем падение напряжения на резисторе R₁:

10. Находим падение напряжения U_{AB} , приложенное ко всей цепи:

$$U_{AB} = I_1 * R_{AB} = 10 * 10 = 18 \text{ MJIM}$$
 $U_{AB} = U_1 + U_4 = 50 + 50 = 100 \text{ B}$

11.При выключении рубильника P_1 сопротивление R_1 замыкается накоротко и схема цепи имеет вид, показанный на рис. 1,е. Эквивалентное сопротивление цепи имеет вид в этом случае

$$R'_{AB} = R_{2,3,4,5} = 50M$$

12. Поскольку напряжение U_{AB} остается равным 100 B, можно найти токи на резисторах R_4 и R_5 :

$$I_{a} = U_{AB} / R_{a} = 100 / 10 = 10 A$$
, $I_{b} = U_{AB} / (R_{b,b} + R_{b}) = 100 / (6+4) = 10 A$

13. Определим падение напряжения на резисторе R₅

$$U_{5} = I_{5} * R_{5} = 10 * 4 = 10 B$$

14. Поэтому напряжение на резисторах R₂, R₃

$$U_{2.3} = U_{A0} - U_{5} = 100 - 40 = 60 B$$

15. Теперь можно найти токи в резисторах R_2 и R_3 :

$$I_1 = \frac{U_{1,3}}{R_1} = \frac{60}{15} = 4A$$
 $I_3 = \frac{U_{3,3}}{R_3} = \frac{60}{10} = 6A$

Проверим правильность вычисления токов, используя первый закон Кирхгофа:

 $I = I_1 + I_3 + I_4 = 4 + 6 + 10 = 20.4$ Таким образом, задача решена верно.

Методические указания к решению задач 2.

Эти задачи к неразветвленным цепям переменного тока.

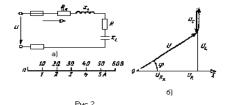
Пример 2.

Активное сопротивление катушки R_{κ} =6 Ом, индуктивное X_{l} =10 Ом. Последовательно с катушкой включено активное сопротивление R=2Ом и конденсатор сопротивлением x_{c} =4 Ом (рис.2,а). К цепи приложено напряжение U=50B (действующее значение). Определить: 1) полное сопротивление цепи; 2)ток; 3)коэффициент мощности; 4)активную, реактивную и полную мощности; 5) напряжения на каждом сопротивлении. Начертите в масштабе векторную диаграмму цепи.

Решение:

1.Определяем полное сопротивление цепи

$$z = \sqrt{R_c + R_c^2} + (x_c + x_c)^2 = \sqrt{(6+2)^2 + (10-4)^2} = 10 \text{ Om}$$


2.Определяем ток

$$I = U_{f} = 50_{f0} = 5A$$

3.Определяем коэффициент мощности цепи:

$$\sin \varphi = \frac{x_L - x_C}{z} = \frac{10 - 4}{10} = 0.6$$

по таблицам Брадиса находим ϕ =36 0 50 $^{\circ}$. Угол сдвига фаз ϕ находим по синусу во избежание потери знака угла (косинус является четной функцией).

4. Определяем активную мощность цепи

$$P = I^2 * (R_1 + R) = 5^2 * (6 + 2) = 200 \text{ Bm}$$
 $UJIU$

 $P = UI \cos \varphi = 50 *5 *0.8 = 200 Bm$, ГДе

$$\cos \varphi = \frac{R+R}{r} = \frac{6+2}{10} = 0.8$$

5.Определяем реактивную мощность цепи

$$Q_{_{C}} = I^{_{2}} * [x_{_{L}} - x_{_{C}}] = 5^{_{2}} * [10 - 4] = 150 \text{nead}$$

6.Определяем активную мощность цепи

$$S = \sqrt{P^{2} + Q^{2}} = \sqrt{200^{2} + 150^{2}} = 250 \text{ BA}$$
 ИЛИ

S = UI = 50 *5 = 250 BA

7. Определяем падение напряжения на сопротивлениях цепи:

$$U_{\rm Re} = I * R_{\rm c} = 5 * 6 = 30B \; ; \quad U_{\rm L} = I k_{\rm L} = 5 * 10 = 50B \; ; \quad U_{\rm R} = I R = 5 * 2 = 10B \; ;$$

$$U_{\rm C} = I * x_{\rm c} = 5 * 4 = 20B \; ; \quad U_{\rm R} = 1 * x_{\rm R} = 5 * 4 = 20B \; ; \quad U_{\rm R} = 1 * x_{\rm R} = 5 * 4 = 20B \; ; \quad U_{\rm R} = 1 * x_{\rm R} = 5 * 4 = 20B \; ; \quad U_{\rm R} = 1 * x_{\rm R} = 5 * 4 = 20B \; ; \quad U_{\rm R} = 1 * x_{\rm R} = 5 * 4 = 20B \; ; \quad U_{\rm R} = 1 * x_{\rm R} = 5 * 4 = 20B \; ; \quad U_{\rm R} = 1 * x_{\rm R} = 5 * 4 = 20B \; ; \quad U_{\rm R} = 1 * x_{\rm R} = 5 * 4 = 20B \; ; \quad U_{\rm R} = 1 * x_{\rm R} = 5 * 4 = 20B \; ; \quad U_{\rm R} = 1 * x_{\rm R} = 5 * 4 = 20B \; ; \quad U_{\rm R} = 1 * x_{\rm R} = 5 * 4 = 20B \; ; \quad U_{\rm R} = 1 * x_{\rm R} = 5 * 4 = 20B \; ; \quad U_{\rm R} = 1 * x_{\rm R} = 5 * 4 = 20B \; ; \quad U_{\rm R} = 1 * x_{\rm R} = 5 * 4 = 20B \; ; \quad U_{\rm R} = 1 * 4 * x_{\rm R} = 5 * 4 = 20B \; ; \quad U_{\rm R} = 1 * 4 * x_{\rm R} = 5 * 4 = 20B \; ; \quad U_{\rm R} = 1 * x_{\rm R} = 5 * 4 = 20B \; ; \quad U_{\rm R} = 1 * x_{\rm R} = 1 *$$

Построение векторной диаграммы начинаем с выбора масштаба для тока и напряжения. Задаемся масштабом по току : в 1 cm - 1,0 A и масштабом по напряжению : 1 cm - 10 B. Построение векторной диаграмм (рис.2,.б) начинаем с вектора тока, который откладываем по горизонтали в масштабе

Вдоль вектора тока откладываем векторы падения напряжения на активных сопротивления $U_{R\kappa}$ и U_R : Из конца вектора U_R откладываем в сторону опережения вектора тока на 90^0 вектор падения напряжения U_L на индуктивном сопротивлении длиной $\frac{50B}{10B/CM} = 5CM}$. Из конца вектора U_I откладываем в сторону отставания от вектора тока на 90^0 вектор падения напряжения на конденсаторе U_C длиной $\frac{20B}{10B/CM} = 2CM}$. Геометрическая сумма векторов $U_{R\kappa}$, U_R , U_L и U_C равна полному напряжению U_R , приложенному K цепи.

Методические указания к решению задачи 3.

Перед решением задач этой группы необходимо знать устройство, принцип действия и зависимости между электрическими величинами однофазных и трехфазных трансформаторов, уметь определять по их паспортным данным технические характеристики.

Пример 10

Трехфазный трансформатор имеет следующие номинальные величины: $S_H=1000~kB*A,~U_{1H}=10kB,~U_{2H}=0,4kB,~потери холостого хода <math>P_x=3000BT,~потери$ короткого замыкания $P_K=11600BT.$ Обе обмотки соединены в звезду. От трансформатора потребляется активная мощность $P_2=600kBT$ при коэффици-

енте мощности $\cos \varphi_2 = 0.8$. Определить: 1) номинальные токи в обмотках и токи при фактической нагрузке; 2) числа витков обмоток; 3) к.п.д. трансформатора при номинальной и фактической нагрузках.

Решение:

1.Определяем номинальные токи в обмотках:

$$I_{1_{\rm H}} = \frac{\frac{S_{\rm M}1000}{\sqrt{3U \, \text{M}}}}{\frac{1}{\sqrt{3} \, U \, \text{M}}} = \frac{\frac{1000 \, ^{*} \, 1000}{1,73 \, ^{*} \, 10000}}{1,73 \, ^{*} \, 10000} = 57, \, 8 \, \, A \, \, ;$$

2.Определяем коэффициент нагрузки:

$$k_{\mbox{\tiny HT}} = \frac{P_{\mbox{\tiny S}}}{S_{\mbox{\tiny g}}\cos\varphi_{\mbox{\tiny S}}} = \frac{600}{1000^{*}0.8} = 0.75$$
 .

3. Определяем токи в обмотках при фактической нагрузке:

$$I_1 = \frac{k_{1000}}{\sqrt{8U_{10}}} = \frac{0.75 \cdot 1000 \cdot 1000}{1.73 \cdot 400} = 43.3A;$$

$$I2 = \frac{k_{v} \cdot 1000}{\sqrt{3}U_{1v}} = \frac{0.75 \cdot 1000 \cdot 1000}{1.73 \cdot 400} = 1082.5 A$$

4.Определяем э.д.с., наводимые в обмотках:

$$E_1 - \frac{U_{1*}}{\sqrt{3}} = \frac{10000}{1/73} = 5780 \, \text{B}, \quad E_2 - \frac{U_{1*}}{\sqrt{3}} = \frac{400}{1/73} = 230 \, \text{B},$$

5. Определяем к.п.д. при номинальной нагрузке :

$$\eta_{\rm H} = \frac{\frac{S_*\cos\varphi,100}{S_*\cos\varphi,+P_*+P_*} = \frac{1000\,^*0,8\,^*100}{1000\,^*0,8\,+3\,+11,6} = 98,2\%}{1000\,^*0,8\,+3\,+11,6} = 98,2\%$$

3десь $Px=3000B_T=3$ к $B_T; P\kappa=1160B_T=11,6$ к B_T .

7. Определяем к.п.д. при номинальной нагрузке:

$$\eta \! = \! \tfrac{\frac{k_{\text{\tiny N}} \cos \varphi_1 100}{k_{\text{\tiny N}} \cos \varphi_1 + P_{\text{\tiny N}} + k_{\text{\tiny N}} P_{\text{\tiny N}}}}{\frac{0.75 * 1000 * 0.8 * 100}{0.75 * 1000 * 0.8 * 3 + 0.75}} \! = \! 98,\! 4\% \, .$$

Вопросы для подготовки к экзамену.

Электрическое поле. Основные понятия и определения.

Понятие об электропроводности.

Конденсаторы. Электрическая ёмкость. Схемы соединения конденсаторов.

Понятие об электрическом токе. Определение силы тока, плотности тока.

Электрическая цепь и её элементы. Источники и приемники эл. энергии.

Сила тока, э.д.с., напряжение.

Закон Ома для электрической цепи.

Электрическое сопротивление и проводимость.

Преобразование электрической энергии в тепловую. Короткое замыкание.

Потеря напряжения в проводах.

Законы Кирхгофа.

Последовательное соединение сопротивлений.

Параллельное соединение сопротивлений.

Смешанное соединение сопротивлений.

Магнитное поле тока. Магнитная индукция. Магнитный поток.

Трансформаторы. Назначение, устройство, принцип работы

Электромагниты, устройство и назначение.

Назначение и устройство машин постоянного тока.

Принцип работы двигателя постоянного тока.

Принцип работы генератора постоянного тока.

Назначение, устройство и принцип работы асинхронного электродвигателя.

Основные понятия о переменном токе.

Получение синусоидальной э.д.с. с помощью генератора переменного тока.

Цепь переменного тока с активным сопротивлением.

Цепь переменного тока с индуктивностью. Индуктивное сопротивление.

Цепь переменного тока с ёмкостью. Емкостное сопротивление.

Неразветвленная цепь с активным, индуктивным и емкостным сопротивлением.

Трехфазная система электрических цепей. Простейший генератор трехфазного тока.

Соединение обмоток генератора звездой и треугольником.

Измерение силы тока и напряжения.

СПИСОК ЛИТЕРАТУРЫ

Основная

- 1. Фуфаева Л.И. Сборник практических задач по электротехнике: учеб. пособие для студентов СПО-М.; «Академия», 2012.
- 2. Фуфаева Л.И. Электротехника: учебник для студентов СПО- М.; «Академия», 2009.
- 3. Немцов М.В., Немцова М.Л. Электротехника и электроники: учебник для студентов СПО- М.; «Академия», 2013.

Дополнительная

Электротехника и электроника. Учебник для СПО под редакцией Петленко Б.И. - М.: Академия, 2010.

Синдеев, Ю. Г. Электротехника с основами электроники [Текст]: Учебное пособие для учащихся профессиональных училищ, лицеев и колледжей / Ю. Г. Синдеев. - 12-е изд. доп. и перераб. – Ростов н/Д: Феникс, 2010. – 407 с. ГОСТ 8.417 – 81 изм. 1.2.3. (ст. СЭВ 1052 – 78) Единицы физических величин. Интернет-ресурсы:

- 1. Естественно-научный образовательный портал [Электронный ресурс]: база данных содержит сведения по теме «Электрические цепи постоянного тока» / Система федеральных образовательных порталов Российское образование. Электрон. дан. Режим доступа: http://www.college.ru/enportal/physics/, свободный. Загл. с экрана. Яз. рус. (Дата обращения: 08.09.2014)
- 2. Мультимедийный курс по электротехнике и основам электроники [Электронный ресурс]: база данных содержит мультимедийный курс «В мир электричества как в первый раз». Электрон. дан. Режим доступа: http://www.eltray.com, свободный. Загл. с экрана. Яз. рус., англ. (Дата обращения: 08.09.2014)
- 3. Школа электрика [Электронный ресурс]: база данных содержит сведения по устройству, проектированию, монтажу, наладке, эксплуатации и ремонту электрооборудования/Образовательный сайт по электротехнике. Электрон. ан. Режим доступа: http://electricalschool.info/, свободный. Загл. с экрана. Яз. рус. (Дата обращения: 17.09.2014

ПРИЛОЖЕНИЕ 1

Образец оформления титульного листа

учреждение Иркутской области «Усть-Илимский техникум лесопромышленных технологий и сферы услуг»

(ГБПОУ «УИ ТЛТУ»)

Домашняя контрольная работа
по учебной дисциплине

	Выполнил(а):
Студент(ка) і	группы
Специальность	
Заочная	я форма обучения
Ф.И.О	
	Проверила:
	преподаватель
Отметка	
Полпись	